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SUMMARY 

The r ad ia t ive  energy t ransfer  t o  the base regions of a rocket from 

exhaust plumes is  s tudied ana ly t i ca l ly  by considering the r ad ia t ion  from 

semi-inf i n i t e  cy l ind r i ca l  and i n f i n i t e  conical  gas bodies of uniform 

temperature and composition. The e f f e c t  of nozzle shielding i s  con- 

s idered.  The r e s u l t s  are i n  terms of the l o c a l  apparent emissivi ty  

i n  the base region. The expression f o r  the spec t r a l  apparent emissivi ty  

i s  i n  the in t eg ra l  form and requires  i n  general  a numerical in tegra t ion .  

For semi- inf in i te  cy l ind r i ca l  gas bodies of small absorption c o e f f i c i e n t ,  

tido as3mptotie formulas obtained 3y d i r e c t  i n t eg ra t ion  are given. 

Numerical r e s u l t s  a r e  presented for  the spec t r a l  apparent emissivi ty  a s  

a funct ion of the cone angle which is  zero f o r  a cyl inder ,  the height  

of shielding,  the spec t r a l  absorption coe f f i c i en t ,  and the r a d i a l  

dis tance i n  the base plane from the gas body. An approximate method 

f o r  ca lcu la t ing  the t o t a l  apparent emissivi ty  with any given inf ra red  

absorpt ion spectrum of the gas i s  suggested by u t i l i z i n g  the concept 

of mean path length.  The method is  i l l u s t r a t e d  by the ca l cu la t ion  of 

the t o t a l  apparent emissivi ty  f o r  semi- inf in i te  cy l ind r i ca l  gas bodies 

of C02 and H20 a t  high temperatures. 
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NOMENCIATURE 

e f f e c t i v e  absorption coef f ic ien t  based on gray-gas assumption, l/f t 

spec t r a l  absorption coef f ic ien t ,  l / f t .  

dimensionless e f f ec t ive  absorption c o e f f i c i e n t  (A = a re )  

dimensionless spec t r a l  absorption c o e f f i c i e n t  (9, = y re) 

c h a r a c t e r i s t i c  length defined by Eq. (C-6), f t .  

parameter defined by Eq. (53), dimensionless 

c h a r a c t e r i s t i c  length defined by Eq. (C-1), f t .  

f i r s t  constant  of Planck's law of rad ia t ion ,  f t  Btu/hr 

second constant  of Planck's law of rad ia t ion ,  f t  OB 

parameter defined by Eq. ( 5 0 ) ,  dimensionless 

c h a r a c t e r i s t i c  length defined by Eq. (C-3), f t .  

r e l a t i v e  cumulative spec t r a l  radiance of a black body, defined 

2 

by Eq. (18), dimensionless 

c h a r a c t e r i s t i c  length defined by Eq. (C-5), f t .  

e l l i p t i c  i n t eg ra l  of the f i r s t  kind defined by Eq. (A-14), 

dimensionless 

e l l i p t i c  i n t e g r a l  of the second kind defined by Eq. (A-15), 

dimensionless 

2 spec t r a l  black-body emissive power, Btu/hr f t micron 

configurat ion f ac to r ,  dimensionless 

configurat ion f ac to r  f o r  the tangent region of a conica l  gas 

body, dimensionless 

f i rs t  p a r t i a l  configuration f a c t o r  defined by Eq. (E-3), 

dimensionless 

second p a r t i a l  configuration f ac to r  defined by Eq. (E-4), 

dimensionless 
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t h i r d  p a r t i a l  configuration f a c t o r  defined by E q .  ( E - 6 ) ,  

dimensionless 

configuration f a c t o r  for the asymptote region of a conical 

gas body, dimensionless 

height of the shielded portion of the gas body measured from 

the base plane, f t .  

dimensionless height of sh ie ld ing  (H = h/re),  dimensionless 

dimensionless axial  distance measured from the base plane, 

due to  sh ie ld ing ,  shown i n  Fig. 10, dimensionless 

c h a r a c t e r i s t i c  length defined by E q .  (C-2), f t .  

s p e c t r a l  black-body in t ens i ty ,  Btu/hr sq f t s t e rad ian  

c h a r a c t e r i s t i c  length defined by E q .  (C-1) ,  f t .  

parameter defined as K = 1 /R  i n  E q s .  (A-14) and (A-15), 

dimens ion le s s  

dimensionless mean path length 

c h a r a c t e r i s t i c  length defined by Eq. (C-8), f t .  

c h a r a c t e r i s t i c  length defined by E q .  ( C - 9 ) ,  f t .  

parameter defined by Eq. (A-4),dimensionless 

parameter defined by Eq. (56) ,  dimensionless 

parameter defined by Eq. (29), dimensionless 

parameter defined by Eq. (29), dimensionless 

value of parameter P evaluated a t  f3 defined by E q .  (32), 
0' 

dimensionless 
2 

s p e c t r a l  r a d i a t i v e  energy f lux ,  Btu/hr f t  

r a d i a l  d i s tance ,  f t. 

bottom radius  of the unshielded por t ion  of gas body, f t .  
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R 
0 

RO 

S 

6 '  

S 

T 

X 

X 

Y 

distance measured from viewed plane, ft. 

dimensionless radial distance (R = ./re), dimensionless 

dimensionless distance measured from viewed plane (Ro = .,/re), 

dimensionless 

path length through gas body, ft. 

projection of the path length on the horizontal plane, ft. 

dimensionless path length (S I: s/re), dimensionless 

absolute temperature, OR. 

distance measured from viewed plane axis, ft. 

dimensionless distance from viewed plane (X = ./re). shown 

in Fig. 10, dimensionless 

distance along viewed plane axis measured from vertex of 

cone, ft, 

dimensionless distance along viewed plane axis (Y = y/re) 

measured from vertex of cone, shown in Fig. 10, 

dimensionless 

dimensionless distance along viewed plane, measured from 

the vertex to the point corresponding to 8'  

dimensionless 
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Greek Letters 

a one-half apex angle of cone, radian 

B polar angle, radian 

B' projection of polar angle onto vertical plane, radian 

upper limiting angle, due to shielding, given by Eq. (D-4) P i  
for cone, radian 

V 



% 
E 

E 
h 

hc  E 

E 

E 
hc2 

e 

A 

A~ i 

'2 i 

a 

T 

'P 

'PO 

lower l imi t ing  angle,  due to  shielding,  given by Eq. (D-1)  

f o r  cone, radian 

l i m i t  of i n t eg ra t ion  on $' defined by Eqs. (23) and (42) f o r  

cy l ind r i ca l  and conical gas bodies,  respect ively,  radian 

c r i t i ca l  angle on f3' defined by Eq (41),  radian 

t o  t a l  apparent emissivity , dimensionless 

s p e c t r a l  apparent emissivity,  dimensionless 

parameter defined by Eqs. (7) and ( 9 ) ,  dimensionless 

p a r t i a l  e f f e c t  of the tangent region of cone on E defined hC 

by the f i r s t  in tegra l  i n  Ea_. (60), dimensionless 

p a r t i a l  e f f e c t  of the asymptote region of cone on C: defined hc 

by the second in tegra l  i n  Eq.  ( 6 0 ) ,  dimensionless 

parameter defined by Eq. (A-l), dimensionless 

value of the parameter ll evaluated a t  @ '  defined by E q .  (A-3 ) ,  
0' 

dimensionless 

i nc l ina t ion  of the viewed plane t o  the cone a x i s ,  defined by 

Eq. (43),  radian 

wavelength of rad ia t ion ,  micron 

lower l i m i t  on wavelength f o r  band absorpt ion i, micron 

upper l i m i t  on wavelength f o r  band absorpt ion i, micron 

Stefan-Boltzmann constant,  Btu/hr ft R 

l i m i t  of i n t eg ra t ion  on the e l l i p t i c  i n t e g r a l s  i n  Eqs. (A-14) 
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and (A-15) ,  radian 

azimuth angle radian 

l i m i t  of i n t eg ra t ion  on cp defined by Eq. (22), radian 
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l i m i t  of integration on cp in  the tangent region, defined by 
'pot 

Eq.  (39) ,  radian 

l i m i t  of integration on cp in  the asymptote region, defined 
'poll 

by Eq.  ( 4 0 ) ,  radian 

0 Schmidt function defined by Eq.  (33), dimensionless 

v variable of integration introduced i n  Eqs. (A-14) and (A-15), 

radian 
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INTRODUCTION 

I n  the design of la rge  booster vehic les  i t  i s  recognized that 

the base regions should be protected aga ins t  heating by the rocket exhaust 

plumes. 

from the gases forced back toward the base. The latter e f f e c t  begins t o  

occur a t  a l t i t u d e s  where the ambient pressure has decreased subs t an t i a l ly  

and spread of engine j e t  r e s u l t s  in  flow in t e rac t ions .  The rise i n  

pressure due t o  slowing of the exhaust gases i n  the in t e rac t ion  regions 

causes hot gases t o  flow toward the vehic le .  Such flow reversa ls  occur 

i n  the center  of a c l u s t e r  of engines. 

ou ts ide  the c l u s t e r  are subjected primarily t o  r ad ia t ive  heating. Optimal 

design of the required pro tec t ion  from heating i n  these regions might be 

achieved i f  the actual magnitude of t h i s  r ad ia t ive  energy t r a n s f e r  could 

be predicted.  

ca l cu la t e  the r ad ia t ive  energy t ransfer  from rocket  exhaust plumes t o  

the base regions by use of idealized physical models. 

There e x i s t  no previous inves t iga t ions  of t h i s  problem i n  the 

This heating is due t o  rad ia t ion  from the plume and t o  convection 

I n  con t r a s t ,  the base regions 

The present  work describes an a n a l y t i c a l  attempt t o  

l i t e r a t u r e .  However, a class of s imi la r  but  l i t t l e  r e l a t ed  problems 

been considered by Schmidt,' and very recent ly  by Gray and Penner.2 

were concerned with the r ad ia t ive  energy t r ans fe r  t o  cen t r a l ly  located 

base areas i n  cy l ind r i ca l  and conical gray-gas bodies. 

They 

The physical models under the present  inves t iga t ion  a r e  semi- 

i n f i n i t e  cy l ind r i ca l  and i n f i n i t e  conical  gas bodies of uniform temperature 

and composition, with t h e i r  axes perpendicular t o  the base plane. The 

lower port ion of the gas body i s  shielded by a cold opaque surface,  which 

simulates the rocket nozzle. The gas body emits and absorbs rad ia t ion ,  

and i s  separated from i t s  outer  base region by a non-absorbing medium. 

1 



Scat te r ing  of rad ia t ion  i s  assumed to  be negl ig ib le .  

presented i n  terms of the loca l  apparent emissivi ty  from the gas body t o  

a d i f f e r e n t i a l  a rea  i n  the outer  regions of the base plane. 

emissivi ty  i n  the present case is  defined as the r a t i o  of the r a d i a t i v e  

energy f lux  a r r iv ing  per u n i t  area and t i m e  to  t h a t  of a black surface a t  

the same temperature. In  general ,  i t  is  a funct ion of the cone angle 

which i s  zero f o r  a c y l i n d r i c a l  gas body, the absorpt ion c o e f f i c i e n t  of 

the gas, the height  of shielding,  and the r a d i a l  d i s tance  i n  the base 

plane from the gas body. 

The r e s u l t s  a r e  

The apparent 

Presented f i r s t  i n  the r epor t  a r e  c e r t a i n  general  considerat ions 

of the problem. The i n t e g r a l  expression of the spec t r a l  apparent emissiv- 

i t y  i s  modified i n  terms of dimensionless governing parameters. 

conventional coordinate system i s  then transformed t o  a system which is  

convenient for  d i r e c t  o r  numerical in tegra t ion .  An approximate method 

u t i l i z i n g  the concept of mean path length i s  suggested f o r  the ca lcu la-  

t i on  of the t o t a l  apparent emissivi ty  i f  the absorpt ion spectrum of the 

gas is  given. In  ca lcu la t ing  the spec t r a l  apparent emis s iv i t i e s ,  d i r e c t  

i n t eg ra t ion  appears t o  be in feas ib l e  f o r  the general  case.  The so lu t ion ,  

however, f o r  the spec ia l  case of black c y l i n d r i c a l  and conical  gas bodies 

can be achieved. I n  addi t ion ,  asymptotic expressions of the spec t r a l  

apparent emissivity a r e  given f o r  a c y l i n d r i c a l  gas body of small absorp- 

t i o n  coe f f i c i en t .  Results of the s p e c t r a l  apparent emissivi ty  f o r  

d i f f e r e n t  values of dimensionless governing parameters were computed 

numerically and a r e  presented i n  graphical  form. The spec t r a l  apparent 

emissivi ty  i s  the same as the t o t a l  apparent emissivi ty  if a gray-gas 

behavior i s  assumed f o r  the gas body. 

The 

The gray-gas assumption has been 

2 



widely used i n  most gaseous-radiation s tudies ;  however, i t s  v a l i d i t y  i s  

always under quest ion and is  very d i f f i c u l t  t o  assess .  Calculat ion of 

the t o t a l  apparent emissivi ty  by use of a mean path length i s  shown to  

be f e a s i b l e  f o r  the semi- inf ini te  cy l ind r i ca l  gas body with a given 

in f r a red  absorption spectrum. As an i l l u s t r a t i o n ,  numerical r e s u l t s  of 

the to ta l  apparent emfssivity a r e  presented f o r  semi-inf i n i t e  cy l ind r i -  

cal  bodies of C02 (2500°F, 1 a t m )  and H20 (2000°F, 1 a t m )  by use of the 

e x i s t i n g  spec t r a l  absorpt ion data.  3 s 4  

l a t i o n s  with respec t  t o  the gray-gas assumption is discussed. 

The implicat ion of these calcu- 

GENERAL CONSIDERATIONS 

Consider a n  a r b i t r a r y  gas body of uniform temperature and 

composition, emit t ing and absorbing r ad ia t ive  energy. The gas body is  

separated from a d i f f e r e n t i a l  area dA by a nonabsorbing medium. No 

sca t t e r ing  of r ad ia t ion  e x i s t s  i n  the system. For a spher ica l  coordinate 

system a s  shown i n  Fig. 1, the rad ia t ive  

area of dA and t i m e ,  i n  the wavelength 

is , 5 

energy f l u x  incident  

i n t e r v a l  between h 

per u n i t  

and A +dA 

is  the spec t r a l  black'-body in t ens i ty ,  y i s  the l i n e a r  IbA where 

spec t r a l  absorption coe f f i c i en t ,  and the path length s i s  i n  general  a 

funct ion of the gas body shape, the loca t ion  i r r ad ia t ed ,  the azimuth 

angle  rp and the polar  angle  B. In  the present  study of semi- inf in i te  

cy l ind r i ca l  and i n f i n i t e  conical  gas bodies a s  shown i n  Fig. 2, 

s = s(a,h,r,q,f3), where CY is  the cone angle ,  h is the height of 
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sh ie ld ing ,  and r is the r a d i a l  d i s tance  i n  the base plane from the 

symmetrical ax is .  Defining the spec t r a l  apparent emissivi ty ,  y, as 

the r a t i o  of the r ad ia t ive  energy f l u x  t o  that of a black body a t  

the same temperature, there follows 

Qx 

For semi- inf ini te  cy l ind r i ca l  and i n f i n i t e  conica l  gas bodies, = 5 

€A (a, h , r 9 1 

For ca lcu la t ions  of d i f f e r e n t  physical  cases ,  i t  i s  highly 

des i rab le  t o  have a l l  the governing parameters i n  Eq. (2) i n  dimension- 

l e s s  form. In  the present  case the dimensionless governing parameters 

a r e  bes t  defined as: 

r h 
r r R = -  
e e 

a =  a H E -  e (3 )  

where r is  the bottom radius  of the unshielded port ion of gas body, 

which corresponds to  the e x i t  radius  of the rocket  nozzle. Accordingly, 

e 

and 

In  terms of dimensionless parameters, Eq. (2) becomes 

-52 = J J (1  - e ) s i n  B cos B dBd9  
% I [  

Equatioh ( 6 )  can be rearranged i n t o  a d i f f e r e n t  form a s  

4 



Eh = F - E h c  (7) 

where 

and 

s i n  /3 cos f3 df3 dqt = ' J  J e 'AhS 
Exc - x 

' p q  

It is readi ly  seen from Eq. (8) that F is  the configurat ion f ac to r ,  o r  

i n  the present case the black-gas apparent emissivi ty .  Consequently, 

can be regarded a s  the contribution due to the f i n i t e  absorption coef f ic -  

i e n t  of the gas body. It should be  emphasized, however, that \c is  

s t i l l  a function of configuration. Equation (7) combined with Eqs. (8) 

and (9) o f f e r s  a s l i g h t l y  d i f f e ren t  physical i n t e rp re t a t ion  of apparent 

em is s i v i  ty . 

E h C  

Equations (8) and (9) can be wr i t t en  i n  a more convenient form 

f o r  in tegra t ion  purposes. This i s  accomplished by introducing 8' i n  

place of 8. From Fig. 1, the re la t ionship  among 8 , 8 and 8' can 

be shown to be 

tan 8 = s e c p  tan 8' 

The functions F and become respect ively 

I 

d8' dcp 
cos2 tan 8' sec 

F = ' J J  x (cos ( p p  cp + tan 2 2  f3') - 8' cp 
and 
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Direc t  in tegra t ion  of Eqs. (11) and (12) is  i n  general  d i f f i c u l t ,  i f  no t  

impossible. Further complication a r i s e s  i f  the sh ie ld ing  i s  considered. 

The t o t a l  apparent emissivi ty  i s  given as 

a0 

(13)  
ncl j $0 Ex Em a = -  

Irn 0 EbA 0 
h5 [exp (c2/hT) - 1 1 4 E =  

-5 where Ebh i s  the spec t r a l  black-body emissive power, U = 5.67 X 10 

erg/cm K sec i s  the Stefan-Boltzmann constant ,  T i s  the temperature 

of the gas body, and c1 = 1.19 x l o m 5  cm erg/sec and c = 1,44 cm K 

a r e  the f i r s t  and second r ad ia t ion  constants  i n  Planck's d i s t r i b u t i o n  

l a w .  When one makes the gray-gas assumption a s  i n  many of the previous 

gaseous-radiation s tud ie s ,  the spec t r a l  absorpt ion coe f f i c i en t  a is  

subs t i t u t ed  f o r  by an e f f ec t ive  absorpt ion coe f f i c i en t  independent of 

wavelength, and consequently, 

t h i s  assumption, and the accuracy of the f i n a l  r e s u l t  depends e n t i r e l y  

on the empirical choice of an e f f ec t ive  wavelength-independent absorpt ion 

coe f f i c i en t .  I n  many cases ,  the use of the gray-gas assumption i s  inev- 

i t a b l e  because of i n s u f f i c i e n t  knowledge of the inf ra red  absorpt ion 

spectrum of the gaseous medium, The next question, however, is  whether 

the t o t a l  apparent emissivi ty  can be ca lcu la ted  when the inf ra red  

absorpt ion spectrum is  known by e i t h e r  experimental o r  t heo re t i ca l  means. 

For the present study, an approximate method f o r  ca l cu la t ing  the t o t a l  

apparent emissivity i s  suggested i n  the following. 

The i n t e g r a l  expression of fh  

2 4  

2 
2 

h 

E = fh. There e x i s t s  no sound bas i s  f o r  

i n  Eq. ( 6 ) ,  combined with the 

d e f i n i t i o n  of F i n  Eq .  (8), suggests the possible  exis tence of an 

approximate form f o r  %: 

6 



5 = F ( 1 - e  -%L) 

where L = L(a,H,R) can be interpreted a s  the dimensionless mean path 

length of the gas body viewed from the base plane. 

nature  of L with respect  t o  % is  ac tua l ly  an assumption and can only 

be j u s t i f i e d  by comparing the ac tua l  value of from Eq. ( 6 )  with that 

The independent 

5 
from Eq. (14) by use of a properly chosen funct ion L(C%,H,R). It appears 

that the choice of 

tiv'e absorption coe f f i c i en t  i n  the gray-gas assumption. However, i n  

c e r t a i n  s p e c i f i c  cases a s  w i l l  be shown l a t e r ,  a proper choice of L 

can be achieved through ana ly t i ca l  considerat ions.  

L is  of the same nature  a s  the choice of an e f fec-  

Subs t i tu t ion  of Eq. (14) i n t o  Eq. (13) gives the t o t a l  apparent 

emissivi ty  e as:  

L R e = -  
UT 0 A5[exp(c2/AT) - 11 

I f ,  a t  c e r t a i n  thermodynamic conditions, the inf ra red  absorption spectrum 

i s  known t heo re t i ca l ly  o r  experimentally, the loca l  apparent emissivi ty  

€(CY,H,R) 

c a l l y .  

can be obtained by evaluating the in t eg ra l  i n  Eq. (15) numeri- 

The absorption spectrum can be approximated by assuming a 

constant  value of spec t r a l  absorption coe f f i c i en t  over a narrow range of 

wavelength, and thus Eq. (15) becomes 

where the summation holds a l l . o v e r  the subdivided ranges of wavelength. 
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Equation (16) may be wr i t t en  a s  

where the functions 

A c1 dh 'ni 

(n = 1,2) (18) 1 D*i(Ani,T) E - 
h5 [exp (c2/kT) -1 1 4 

0 

a r e  ca l l ed  the r e l a t i v e  cumulative s p e c t r a l  radiance of a black body, and 

a r e  tabulated as a funct ion of temperature and frequency. 6 

For most systems of physical  i n t e r e s t ,  (AT) < 0.3 cm°K, and 

the Planck's d i s t r i b u t i o n  l a w  can be approximated by Wien's l a w  with an 

accuracy b e t t e r  than 1%. The t o t a l  apparent emissivi ty  i n  t h i s  case 7 

becomes 

-c2/hT '2i 

E(CZ,H,R) = - "IF 1 [l-exp(-AiL) 1 J A-5 e dx 4 

i 'li 

o r  by performing the in tegra t ion ,  

€(CX,H,R) = - "lF [l-exp(-AiL)] [ e x p ( - ~ ~ / A ~ ~ T ) ]  X 
U 

i 

3 6 
3 +  2 +  3 

C2(hliT) c ~ ~ ( A ~ ~ T )  c2 (AliT) c2 
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SPECTRAL APPARENT EMISSIVITY OF A SEMI-INFINITE 
CYLINDRICAL GAS BODY (CX = 0) 

For the case of a semi- inf ini te  cy l inder  viewed from i t s  ou te r  

base, the configurat ion f ac to r  defined i n  Eq. (11) can be wr i t t en  as: 

where 

and 

0 0  

'PO = sin-' (+) 

Equation (21) can be in tegra ted  d i r ec t ly  by f i r s t  in t eg ra t ing  with respect  

t o  t an  f3' ins tead  of f3 ' ,  and the r e s u l t  i s  2 

(24) 
1 -1 F(H,R) = - s i n  P i  t an  ( s i n  f3' t an  qo) 
r[ 0 

The same expression can a l s o  be obtained by use of the tabulated r e s u l t  

of a more general  configurat ion (Configuration P - 2 )  i n  Ref. 8 .  I n  obtain- 

ing Eq. (24), an  approximation is  found necessary f o r  the l i m i t  of f3' i n  

the in tegra t ion .  The upper l i m i t  f3' as i l l u s t r a t e d  i n  Fig. 3 is being 
0 

approximated as the a r i thmet ic  mean of the two l imi t ing  angles,  

f3; , 
from t h i s  approximation i s  i n  general qu i t e  small f o r  a semi- inf in i te  

cyl inder ,  and becomes smaller as R increases ,  s ince  the two l imi t ing  

angles  f o r  the p a r t i a l l y  viewed region a r e  g e t t i n g  c lose r .  

f3i and 

f o r  the p a r t i a l l y  viewed region due t o  shielding.  The e r r o r  r e su l t i ng  

In  the l imi t ing  case B:, = 2 ' (corresponding to  H = 0),  an 

exact  r e s u l t  i s  obtained f o r  Eq. (24) with no sh ie ld ing ,  

9 



F ( 0 , R )  = - A I. s i n  (+) 
The term 4cc defined i n  E q .  (12) can be expressed from simple 

geometrical considerations as:  

where the dimensionless path length a s  shown i n  Fig. 3 is  given by 

o r  i n  terms of p '  and cp , 

and cp, and PI, a r e  given i n  E q s .  (22)  and ( 2 3 ) ,  respect ively.  The same 

approximation of the l i m i t  of g' as mentioned before i s  a l s o  introduced 

i n  E q .  ( 2 6 ) .  I n  general ,  d i r e c t  i n t eg ra t ion  of E q .  (26) i s  not f eas ib l e  

and numerical computation must be performed. A more convenient form f o r  

numerical computation can be achieved by introducing the var iab le  

0 

1/2 
112 

2 2  
2 2 

(cos cp + tan p ' )  
2 \ ( l -R  s i n  c p )  

P E  tan p' 

Thus, E q .  (26) reduces to  

Af te r  in tegra t ion  by p a r t s  with respect  t o  P, there  r e s u l t s  

10 



@(Po) dg, 
A 

E (H,R) = hc 

where 
112 

112 
2 2  

2 2 2\(l-R s i n  9) 
* (cos g, + t an  P i )  Po(Q,> = t an  

and ll 

-00 

1 The funct ion @(P) has been tabulated by Schmidt. 

The i n t e g r a l  appearing i n  Eq. (31) s t i l l  must be evaluated 

numerically a t  d i f f e r e n t  locat ions spec i f ied  by H and R. Two asymp- 

t o t i c  expressions f o r  E 

in tegra t ion .  In  the case of no shielding (H = 0) ,  the asymptotic 

expression of e,, f o r  << 1 is  given as (Appendix A): 

however, can be obtained through d i r e c t  hc ’ 

2 
E~(O,R)  = - R -1 

A 

where El and E2 a r e  the e l l i p t i c  i n t eg ra l s  of the f i r s t  and second 

kinds,  respect ively.  For large R, the spec t r a l  apparent emissivi ty  

can be expressed as 

For the case with shielding (H # 0) ,  the r e s u l t  f o r  << 1 

and R->> 1 can be derived a s  (Appendix B): 

I f  there  i s  no sh ie ld ing  

Eq. (35) as expected. 

(H = 0, PI, = ~ / 2 ) ,  i t  gives  the expression i n  

11 



Numerical r e s u l t s  f o r  the spec t r a l  apparent emissivi ty  i n  the 

base plane of a semi- inf ini te  cy l ind r i ca l  gas body a r e  presented i n  Figs.  

4 ,  5, 6 ,  and 7 .  Values of the spec t r a l  apparent emissivi ty ,  

p lo t ted  versus R, the dis tance from c e n t r a l  axis  of the gas body i n  

r a d i i ,  f o r  d i f f e ren t  values of H and . Four values of the dimen- 

s ion le s s  height of shielding,  H, a r e  given, H = 0, 1, 2, and 4 ,  and 

three  values a r e  used f o r  the dimensionless absorpt ion coe f f i c i en t ,  

4, = 0.1, 0.4, ~1 (black-body case).  

were calculated d i r e c t l y  from Eq. (24), while the o the r s  were obtained 

through numerical in tegra t ion  of Eq. (26) by use of a 7090 D i g i t a l  

Computer. 

Eh ’ were 

Ah 

The black-body curves (Ah + w) 

For most p r a c t i c a l  appl ica t ions ,  the range of R would probably 

be l e s s  than 5, and the spec t r a l  apparent emissivi ty  i n  the base plane i s  

about 0.1 or  l e s s ,  depending on the height of shielding.  The e f f e c t  of 

shielding on the spec t r a l  apparent emissivi ty  i s  shown to  be s i g n i f i c a n t  

f o r  a large spec t r a l  absorpt ion coe f f i c i en t ,  espec ia l ly  i n  the c lose  

v i c i n i t y  of the gas body. 

Asymptotic va r i a t ions  of the spec t r a l  emissivi ty  f o r  a gas body 

of small spec t ra l  absorpt ion coe f f i c i en t  and without sh ie ld ing  

(H = 0) were ca lcu la ted  from the a n a l y t i c a l  expression, Eq. ( 3 4 ) ,  and a r e  

compared i n  Fig. 8 with the numerical r e s u l t s  from the computer. It i s  

c l e a r l y  indicated that the ana ly t i ca l  expression 

dent ly  used to compute E f o r  cases when 4, < 0.1. I n  Fig. 9 ,  a 

comparison i s  made between the asymptotic r e s u l t s  f o r  and 

R>> 1 calculated from Eq. (36) and the computer r e s u l t s .  Again, i t  i s  

shown t h a t  Eq. (36) can be used f o r  cases  when 

ducing appreciable e r ro r s .  

(4, << 1) 

Eq. ( 3 4 )  can be confi-  

x 
% << 1 

4, < 0.1 without i n t ro -  
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It should be emphasized again that a l l  the r e s u l t s  and discussion 

i n  t h i s  sec t ion  a r e  d i r e c t l y  applicable t o  the ca lcu la t ion  of the t o t a l  

apparent emissivi ty  i f  the gray-gas assumption i s  employed. I n  that case,  

= A, and E,, = E. 

SPECTRAL APPARENT EMISSIVITY OF AN INFINITE CONICAL GAS BODY 

For an  i n f i n i t e  conical  gas body of apex angle 2a, the config- 

u ra t ion  f a c t o r  can be w r i t t e n  as 

2$ I 
dB' dcp (37 1 sec cos cp tan $' B:, 'Po 2 

2 2 2  F(a,H,R) = ; J J 
(cos cp + tan B ' )  

* -Q G 

From Fig. 10 i t  can be seen that a t  a c e r t a i n  loca t ion  i n  the base plane, 

the upper l i m i t  cp ($I) 

asymptotes to  the conical  body fo r  var ious values of $'. 

the configurat ion f a c t o r  i n  both the asymptote and tangent regions,  Eq. 

can be s p l i t  i n t o  two main in tegra t ions  a s  

depends upon whether there  e x i s t  tangents o r  
0 

For ca l cu la t ing  

(37) 

2$ I 
dB' do 

sec cos Q tan $' 
2 

A 2 2 2  
' P; ?Yt 0 (cos cp + tan B ' )  

F((T,H,R) = 

2$ I 

(cos 2 cp + tan 2 2  $ 1 )  

dB' dcp 
cos2rp tan  $ 1  sec 

'oa 

+ ' J J 
-a o 

E F1 + F2 (38) 

where F1 and F2 represent  the f i r s t  and second i n t e g r a l s ,  respec t ive ly ,  

i s  the c r i t i c a l  angle a t  which the tangent gives  way to  the asymptote, 

and cp and cpoa a r e  the l imit ing azimuth angles  i n  the tangent and o t  

13 



which def ines  
O t '  

asymptote regions, respect ively.  The expression f o r  cp 

the l i m i t  of in tegra t ion ,  can be obtained by s e t t i n g  the expression of the 

path length (Appendix C)  equal t o  zero, and the r e s u l t  i s  

R tan a c o t  B'  + (1-H tan a) 
2 112 -(I-H tan a) 1 

(39)  

I n  the asymptote region, the conic sec t ion  i s  always a hyperbola, and the 

asymptote to the hyperbola determines the l i m i t  of cp oa ' 

tan f3' 
tan a 

The c r i t i c a l  angle p l  

mus t  be ident ica l  a t  p: , and the r e s u l t  i s  

is  determined by r e a l i z i n g  t h a t  Eqs. (39) and (40)  

1 1-H tan a) tan a 
R = - tan-' [ ( p; 

Again, the upper l imi t ing  angle f3' i n  Eq. (38) has been approximated by 

the ar i thmetic  mean of the two l imi t ing  angles  and (3; , and it i s  

(see Appendix D ) ,  

0 

= + (can-' ( y) + tan-'[ R F R -1 t an  a 
B:, h 2 -(1-H tan a) 2 I ( 1 - H  tan a) K 1  

(42 1 

As shown i n  Fig. 10, the tangents t o  the cone f o r  var ious values 

of B'  (P; 5 @ '  < - PA) t race  a plane. m e  inc l ina t ion  angle 8 of the 

plane t o  the cone axis,  i s  a funct ion of the space var iab les  of the loca t ion  

i r r ad ia t ed .  The angle 8 i s  found to  be equal t o  , 
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1 - H  tan a) tan a 
R 

e = - tan-' r ( (43) 

The configuration fac tor  of the t r iangular  plane mentioned above 

has also been given i n  Ref. 8 [Eq. (6), Fig. 21 as of the following form 

r y dx dy 
(44) 

0 - 
F1 - A 2 

' Y X  

where x measures the dis tance from the plane ax i s ,  y i s  the dis tance 

along the plane ax i s  from the ver tex,  and r i s  the dis tance from the 
0 

the viewed area i n  the base plane. I n  dimensionless form, 

becomes 

2 

(45) 
Y dY dX 2R0 cos e - 

2 (X2 + Y2 + R: + 2RoY s i n  e )  A 
Y X  

F1 - 

where 
r - 

0 - , y s L  9 Ro = 
X 

r X r -  r e e e 

as indicated i n  Fig.  10. The dimensionless dis tance Ro, i n  the present 

case,  may be expressed by: 

2 2 

R 
R - ( l - H  tan a) 

(47 1 

The two expressions f o r  F1, the configurat ion f ac to r  i n  the 

asymptote region, i n  Eqs. (38) and (45) a r e  ac tua l ly  iden t i ca l .  The 

geometrical r e l a t i o n s  between two s e t s  of i n t eg ra t ion  var iab les ,  f3' 9, 

and X, Y, can be derived from Fig. 10 a s  
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tan a ( R - [ ( ~ - H  tan a ) ( t a n  ~ ) Y / C I ~  
[R Y(tan a)/c - (I-H tan a)] tan fi' = 

and 

X 
R - [(I-H tan a ) ( t a n  ~ ) Y / c J  tan Cp = 

where 

By use of the above r e l a t ions ,  Eq. ( 3 8 )  becomes 

2 - 2ROcos 8 {J~J~'""" a)/c Y dX dY 

(X +Y +Ro +2R0Y s i n  0 )  2 2  2 2 R F(OI,H,R) = F1 + F2 - 
Yo x=o 

Y dX dY 
2 2  2 2 (X +Y + R ~  +2R0 Y s i n  e )  

00 0 

where Yo is the dimensionless dis tance,  measured from the ver tex  to  the 

point  corresponding to  B:, : 

and E i s  the a x i a l  d i s tance ,  measured from the base plane, due t o  shielding,  

and i s  given by 

2 
(54) 

- 
H r  R~ - (1-H tan a) 

R tan p; + (1-H tan a) tan a 

Direc t  in tegra t ion  of the f i r s t  i n t e g r a l  i n  Eq. (51) i s  given i n  Appendix 

E ,  and the r e s u l t  is  
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B tan a - B tan a 

where 
* 

'I' 2 
+ (1-H tan a); tan a - R + 2(1-H tan a) tan a 

Similar ly ,  the configurat ion fac tor  F2 f o r  the asymptote region, given 

by the second in t eg ra l  i n  Eq. (51), can be integrated once, giving 

tan-' ( tan a) - (1-H tan a) tan 01 
F2 - nC 

2 2 (YRotan a + C s i n  0) dY 

2 2  2 a [ a + 2R 0 Y s i n  8 + R:-B2] 
C2 

The second term i n  the r i g h t  hand s ide  of the above equation can be in t e -  

grated d i r e c t l y  only f o r  two  special  cases.  

base plane i s  located a t  the vertex of the cone, 

and F2 i s  given by 

I n  the f i r s t  case,  when the 

1-H tan a = 0, 6 = 0 

1 7  



2 s i n  a F2 = - 2 

Dtic r e s u l t  f o r  R >> 1 can be derived. I n  the second case,  an asymp 

This i s  

(59 1 1 B~ s i n  2 a 
2 2 1 /2  

- - -  
F2 - R [R 4 2  -B (1-H tan a) tan a1 

Note that, a s  R-, 1 and H-, 0, F2 3 0. 

considerat ion should a l s o  be 'Ac I n  ca lcu la t ing  the term 

given to  the two separate  regions, the tangent and asymptote regions.  

18 

Thus 

2B I 
dB1 dp 

sec cos cp tan PI 2 'A 'Poa 

2 2 2  +:j ' - a  J 0 e (cos cp + tan B ' )  

and represent  the f i r s t  and second in t eg ra l s ,  %c 'I where 
r) A L 

respect ively,  The dimensionless path length can be derived from 

geometrical ana lys i s  (Appendix C) as 

 COS 2 cp + tan 2$l)1/2cos cp 
X 2 2 2 s =  

(tan B'  - tan CI cos cp)  

2)1'2 2 2  2 [(I-H tan a) -R s i n  c p ]  + 2R(1-H tan a ) t a n  P ' t a n  0 + R tan a 

(61) 



The above expression holds i n  the tangent region 

the region where f3 < (2, i n  which the path length S goes to  i n f i n i t y .  

I n  the asymptote region (- 01 5 f3' - < $:), S is  i n f i n i t e  f o r  a l l  9, 

therefore  %c = 0. 

tan a)l 

cone and 

t i o n  coe f f i c i en t .  

($: 5 $' 5 $A), excluding 

As a d i r e c t  consequence, i n  the region R 5 I ( l - H  

the asymptote region extends a l l  over the 
2 

i n  the base plane, 

E , ~  
approaches to  zero regradless  of the value of the absorp- 

I n  general ,  the term scC has the expression 

$A and S a r e  given i n  E q s .  (39), (42),  and (61), respec- qat* where 

t ive  ly  . 
Numerical r e s u l t s  of the spec t r a l  apparent emissivi ty  a r e  shown 

i n  Figs.  11 through 22, f o r  a = lo" ,  30", 60°, = 0.1, 0.4,  00, and 

H = 0, 1, 2, 4.  The values of the configurat ion f a c t o r  F (or E when A 
-+ 0 0 )  were obtained by adding F ca lcu la ted  from the a n a l y t i c a l  1 

expressions i n  Eq. (55) and 

For f i n i t e  values of Ah, 
di f fe rence  between F and eAC, the l a t t e r  being numerically computed 

from Eq. (62). A l l  numerical computations were performed by the use of 

a 7090 Dig i t a l  Computer. 

F2 ca lcu la ted  numerically from E q .  (57). 

the spec t ra l  apparent emissivi ty  i s  the 

As would be expected, a t  a c e r t a i n  loca t ion  i n  the base plane, 

the spec t r a l  apparent emissivity is  l a rge r  f o r  the conical  gas body (a> 0) 

than that f o r  the cy l ind r i ca l  gas body (a = 0) of the same absorpt ion 
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coe f f i c i en t  Ah, and i s  increasing with the cone angle.  Furthermore, 

as the cone angle increases ,  the e f f e c t  of f i n i t e  absorpt ion coe f f i c i en t s  

i s  diminishing and the spec t r a l  apparent emissivi ty  approaches to  i t s  

black-body value o r  the configurat ion f ac to r .  This i s  due t o  the f a c t  

t h a t  the asymptote region, which i s  eventually black i n  the sense of 

i n f i n i t e  path length,  becomes l a rge r  and l a rge r  as compared t o  the tan- 

gent region, i n  which the e f f e c t  of f i n i t e  absorpt ion e x i s t s .  

l imi t ing  case when 

region extends a l l  over the cone, and E = F f o r  a l l  values of 

This i s  c l ea r ly  shown i n  Figs.  20, 21, and 22. 

I n  the 

R 5 I(l-H tan a)] a s  mentioned before,  the asymptote 

Ah" A 

CALCULATION OF MTAL APPARENT EMISSIVITY OF 
A SEMI-INFINITE CYLINDRICAL GAS BODY 

The present  sec t ion  w i l l  t r y  t o  demonstrate the method of 

ca lcu la t ing  the t o t a l  apparent emissivi ty  by u t i l i z i n g  the concept of 

mean path length. This concept has been widely used i n  var ious calcu- 

l a t ions  of gaseous r ad ia t ive  energy t r ans fe r .  But the present  case i s  

d i f f e r e n t  from a l l  o ther  previous ca lcu la t ions  i n  that the present  mean 

path length i s  a complicated funct ion of the space var iab les ,  which 

character ize  the loca t ion  i n  the base plane. The following ca l cu la t ion  

of the t o t a l  apparent emissivi ty  i n  the base plane i s  based on a semi- 

i n f i n i t e  cy l indr ica l  gas body. I n  t h i s  case,  an  approximate expression 

of the mean path length can be es tab l i shed  semi-empirically through 

a n a l y t i c a l  considerations.  For an i n f i n i t e  conica l  gas body, such an 

expression would be e n t i r e l y  empirical .  

Consider f i r s t  a semi- inf in i te  cy l ind r i ca l  gas body of a 

su f f i c i en t ly  small absorption coe f f i c i en t  so that %L << 1, Therefore, 
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Therefore, Eq. (14) may be approximated a s  

F4,L E = F ( l  - e A 

Comparing the above equation with the asymptotic expression of E f o r  

H = 0 and 4, << 1, E q .  (%), and using the exact  r e s u l t  of F i n  

E q .  ( 2 5 ) ,  one can f ind  

x 

It should be emphasized tha t  the above expression is  va l id  f o r  a l l  values 

of R, but  under the l imi ta t ions ,  H = 0 and 4, << 1. The condition 

4,L << 1 is  eliminated above, since L a s  calculated from Eq. ( 6 4 )  (see 

Fig. 2 3 )  i s  of the order 

t h a t  the values of E obtained by use of the mean path length, Eq. ( 1 4 )  

and E q .  ( 6 4 ) ,  agree very well  w i t h  the numerically calculated r e s u l t s  

f o r  a l l  values of 4,. It i s  a l so  obvious that the agreement becomes 

exact  a t  two l i m i t s ,  4, = 0 and 4, + w .  This ind ica tes  that the 

r e s t r i c t i o n  of 4, << 1 

has been establ ished here. 

O i l ] .  Furthermore, a numerical check reveals  

x 

can a l so  be removed, although no rigorous proof 

For the case with shielding (H # 0) the asymptotic expression 

i s  given i n  E q .  ( 3 6 )  f o r  4, << 1, but  only f o r  the range R >> 1. Corn- 

bining E q s .  ( 2 4 ) ,  ( 3 6 )  and ( 6 3 )  gives 

( 6 5 )  
II 

L =  
R tan-'(sin tan cpo)  

under the conditions 4, << 1 and R >> 1. I n  order t o  obtain an expres- 

s ion  f o r  a l l  the values of R, a semi-empirical equation i s  suggested as 
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The above equation i s  chosen based on the considerat ion t h a t  i t  should 

reduce to  Eq. ( 6 4 )  a s  H + 0, and to  Eq. ( 6 5 )  f o r  << 1, R >> 1. 

Again, the comparison between the values of ek obtained from Eqs,  ( 1 4 )  

and ( 6 6 ) ,  and the numerical r e s u l t s  from the computer ind ica tes  t h a t  the 

condi t ion 5 << 1 i s  not  necessary i n  the present case,  The values of 

L as a function of H and R a r e  p lo t ted  i n  Fig.  23.  

With the expression of L a s  given i n  Eq. ( 6 6 ) ,  one can c a l -  

cu la t e  the t o t a l  apparent emissivi ty  according to  Eq. ( 1 7 )  wi th  a given 

inf ra red  absorption spectrum. By using the ava i l ab le  absorption measure- 

ments f o r  C02 and H20 a t  high temperatures as shown i n  Figs.  24 and 2 6 ,  

numerical ca lcu la t ions  have been performed and the r e s u l t s  a r e  presented 

i n  Figs.  25 and 2 7 .  A t  the same loca t ion  i n  the base plane,  the apparent 

emissivi ty  of H20 i s  found t o  be considerably l a rge r  than t h a t  of C02. 

This i s  due to  the f a c t  t h a t  there e x i s t  more and wider H 2 0  absorpt ion 

bands i n  the s ign i f i can t  wavelength region around the maximum poin t  of 

the Planck's d i s t r ibu t ion .  The va r i a t ions  of the t o t a l  apparent emissivi ty  

E with respect t o  H and R a r e  similar to  those of the spec t r a l  

apparent emissivity ". This implies that the gray-gas assumption does 

not  change the basic  character  of the funct ional  dependence on H and 

R, and the assumption can be successful ly  employed i f  the wavelength- 

independent absorpt ion coe f f i c i en t  i s  properly chosen. 

394 

For C02 a t  2500'F 
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and 1 atm., i t  i s  found by comparing Fig.  25 with corresponding 

Figs .  4 to  7, that the e f f ec t ive  wavelength-independent coe f f i c i en t  A i s  

about 0.05 f o r  a l l  four  values of H. For H 0 a t  2000'R and 1 atm., the 

value of A i s  about 0.25 f o r  d i f f e ren t  values of H. 

\ - f igures ,  

2 
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APPENDIX A 

Asymptotic Expression f o r  the Spectral  Apparent Emissivity 
of a Semi-Infinite Cylindrical  Gas Body p4, << 1) (H = 0 ,  

The cor rec t ion  term E f o r  the spec t r a l  apparent emissivity 
hC 

of a cy l ind r i ca l  gas body due to  f i n i t e  absorption coe f f i c i en t  i s  given 

a s  

28' dp' dcp sec 

(cos cp + tan 8')  

2 
PA Qo 

E hc (H,R) = 2 R J J e -Ahs cos cp tan 
2 2 2  

' 0  0 

where the dinensionless path length S can be expressed a s  

By l e t t i n g  

2 2 1/2 
7 = (cos cp + tan 8') / t an  p' 

Equation (26) becomes 

where 
2 2 1/2 

q0 = (cos cp + tan 8;) /tan 

and 
1/2  2 2  m = 2 p4,(1-R s i n  cp)  

(A-1) 

(A-3) 

(A-4) 

Equation (A-2) can be fu r the r  wr i t ten  a s  

(A-5) 
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Now consider the in t eg ra l  

J 
03 

x Since To > 1 f o r  the range 0 < < and the integrand i s  always 

pso i t ive ,  i t  follows 

1 

W 00 

9 From tab les  of d e f i n i t e  i n t eg ra l s  

1 - 
2 m -' e-mT dll = 0.577 + an m - m + - - . - I  2,2! (A-7)  

When A << 1 and consequently m < 1, i t  i s  obvious t h a t  Eq. (A-5) can 

be approximated by 

h 

o r  

cpO 

E Ac (H,R) = J dcp [i Tm2 e-mT (1-mT) 1'' 
, o  03 

(A-8)  

I[ For the case of no sh ie ld ing  (H = 0,p; = 2 ), To = 1, and 

Eq, (A-9) becomes 

o r ,  s ince  m << 1, 

' 0  

(A-10) 

(A-11) 
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From Eq. (25) and (Eq. (A-41, Eq. (A-11) g ives  

0 

By l e t t i n g  # s i n  cp = N, Eq. (A-12) can be rearranged a s  

From in tegra t ion  tables, '  i t  follows 

(A-12) 

(A-13) 

where E1(cp,K) and E (cp,K) a r e  the e l l i p t i c  i n t eg ra l s  of the f i r s t  and 

the second kind, respect ively,  
2 

(A-14) 

(A-15) 

5[ 

T = T 2 '  Both functions a r e  numerically tabulated' f o r  the present case 

When R i s  very la rge  (R >> 1) the e l l i p t i c  i n t eg ra l s  can be 

approximated a s  9 

E l ( : , ; )  = $ [I+%] 
4R 

27 
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and the spec t ra l  apparent  emiss iv i ty  becomes 

28 



APPENDIX B 

Asymptotic Expression f o r  the Spectral  Apparent Emissivity 
of a Semi-Infinite Cylindrical  Gas Body (4, << 1, R > >  1) 

For 4, << 1, i t  i s  shown i n  Appendix A that 

where the l i m i t  7, i s  given by E q .  ( A - 3 ) .  When R is very la rge  

(R >> l), the angle rp becomes very small and Eq. (A-3)  can be 

approximated by 

(A-9) 

(B-1) 

Since 11, becomes independent of cp, Eq.  (A-9)  can be expressed i n  

the following approximate form 

E (H,R) = - (1-2mT0) * hC 2 

With m given by Eq. (A-4 ) ,  d i rec t  in tegra t ion  of (B-2) gives 

4, - -  1 
E (H,R) = - hc 2 ' 0  V0R : 

or 

4, 
2 s i n  f3' 

EhC(H,R) = r[ 0 sin-' (+) - - R s i n  

From Eq. (24) the spec t ra l  apparent emissivi ty  E 

wr i t t en  a s  

Eh(H,R) - - A h  R s i n  PI, 

03-31 

can be 

2 9  



In the case of no nozzle shielding 

becomes 

which i s  the same result  as  derived in  Appendix A.  
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APPENDIX C 

Derivation of the Expression f o r  the Path Length 
Through a Conical Gas Body 

There a r e  two possible ways to  obtain the expression f o r  the 

In  the  f i r s t  case,  considerat ion i s  given path length through a cone. 

t o  the geometric proper t ies  of conic sect ions f o r  d i f f e r e n t  values of 

the angle f 3 ' ,  

employed. 

d i f f e r e n t  regions of the cone according to f3! 

obtained i n  a much more d i r e c t  fashion by a three-dimensional geometric 

ana lys i s ,  a s  shown below. 

and geometric re la t ions  i n  plane geometry w i l l  be 

This would eventually lead to  many geometric r e l a t i o n s  i n  

The same r e s u l t s  can be 

The following der ivat ion of the expression of path length s 

is  concerned with the region where f3 > 0, s ince  s + 00 a s  f3 C a. 

From Fig.  ( C - l ) ,  simple r e l a t ions  can be es tab l i shed  as follows: 

and 

j - r + c  tan f3' = - - 
L1 L1 + L2 

i i +  s '  t an  f3 = - = 
L1 L1 + L2 

e 

l e  
tan a = L +(r cota-h) 

d - 
L1+L2+ ( r c o ta- h) e 

n n 2 (i + s ' ) ~  = bL + (r + c)  

2 e2 = i2 + r - 2 r j  

Appropriate manipulation of Eqs. ( C - l ) ,  ( C - 2 )  and ( C - 4 )  gives 

2 2  2 b2 = (L1 + L2) ( t an  @ - tan f 3 ' )  
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2 2 2  Since d = b + c , there r e s u l t s  from E q s .  (C-3) and (C-6): 

L1+L2 =([(recom-h) tan 2 a + r tan@' 1+f [(recota-h) t an  2 a + 1: t an  @' 1 2 + 

(C-7) 

2 2 2  2 2 + [ ( r  cow-h) tan  a-r ] ( t an  @-tan , e  

The expression f o r  L1 can be obtained by use of E q .  (C-5), i n  

which j, i and e a r e  eliminated through the respec t ive  r e l a t i o n s  

given i n  Eqs. (C-l), (C-2) and (C-3). The r e s u l t  i s  

L1 =I[(recota-h)tan 2 a + r tan@']-f [ ( recota-h) tan  2 + r t an@' ]  2 + 

2 2  2 2 2 [ ( r  cota-h) tan  a - r ] ( t an  f3 - t an  f3 - tan a) (C-8) e 

Combining Eqs .  (C-7) and (C-8) y i e l d s  the expression f o r  L2: 

2 2 2 2  2 2 2 1/2 
2f[ ( recota-h) tan  a + r tan@']  +[(recora-h) tan  a - r ] ( t an  f3-tan a)) 

2 2 ( t an  f3 - tan a) L2 = 

( C - 9 )  

According to  Fig. ( C - l ) ,  the path length s i s  given by ., 

L2 L2 tan @ 

s i n  (3 s i n  8 *cgs @ 
f -  

S' s a - =  (C-10) 

where L2 has the expression i n  E q .  (C-9) .  I n  order t o  have s i n  terms 

of two independent parameters, @' and cp, only, E q .  (10) must be used 

and the expression f o r  s becomes 
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s -  2 2  2 2  $3 , )  1/2 2 

X { cos cp 
[(r cota-h) tan 01 - r sin 91 + 2 cos cp(cos2cp + tan 

(tan 8' - tan a cos cp) e 2 2 2 

2 2 2 + 2 r tan f3'(recota-h)tan a + r tan a (C-11) 

Therefore, the expression for the path length through a conical gas body 

in  dimensionless form i s  given by 

s =  2 2  
281) 1/2 

X { cos cp 
[(1-HtanCL)2 - R s i n  cp1 + 2 cos cp(cos2g + tan 

(tan B' - tan a cos 7) 2 2 2 

2 R tan 8'  tan a(l-HtanOl) + R tan a Y2 
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APPENDIX D 

Shielding Effec t  on the In t eg ra t ion  L i m i t  of the Spec t ra l  
Apparent Emissivity of a Conical Gas Body 

It can e a s i l y  be shown from Fig.  10 t h a t  the lower l imi t ing  

angle corresponding t o  a shielding he ight  H i s  given by 

Geometrically the upper l imi t ing  angle,  f3;, i s  the one.which corresponds 

t o  the l imit ing angle Tot 

of the unshielded port ion and to  the conic sec t ion ,  determined by the 

f o r  both of the tangents to  the bottom c i r c l e  

plane which has an inc l ina t ion  

the locat ion i r r ad ia t ed .  The equation of the tangent t o  the bottom c i r c l e  

p i  to the v e r t i c a l  ax i s ,  and drawn from 

of the unshielded port ion i s  simply 

1 tan cp = 
O t  f i  

given by 

(D-2 )  

and the equation of the tangent to  the conic sec t ion  i s  given i n  Eq. ( 3 9 ) ,  

which is  derived by s e t t i n g  the path-length expression given i n  Appendix 

C equal t o  zero, 

R tan a c o t  f3' + (1-H tan a)- 
2 112 [ R ~  - (I-H tan a) I 

tan rp = o t  

Equating Eqs. (D-2)  and (D-3), and solving f o r  p i  gives  

( D - 3 )  
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It i s  obvious that f o r  p' < p' C pi the range of i n t eg ra t ion  2 
on Cp is  not from 0 + Cpot(B'). A complicated expression f o r  t h i s  range 

a s  a funct ion of can be obtained, but  i t  i s  so compli- 

cated that an averaging procedure is  des i rab le .  

considering t h a t  the range of in tegra t ion  i s  from O+Cpo(pi), where 

B i  

@ ' ( P i  < B' < P i )  

It is  accomplished by 

is the a r i thmet ic  mean of the two l imi t ing  angles,  

This approximation is  reasonable, s ince the difference between f3; and 

i s  very small, espec ia l ly  a s  R becomes l a rge r .  
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APPENDIX E 

Configuration Factor f o r  the Tangent Region of a 
Conical Gas Body 

The configurat ion f a c t o r  f o r  the tangent region of a conic gas 

body i s  given i n  Eq. (51) as 

2 RocOs2e j J ~ ( t a n W ~ / ~  

Yo x=o 
(E-1) 

Y dX dY 
r[  2 2  2 2 F1 = 

(X +Y +Ro 4- 2R0Y s i n  6) 

In tegra t ion  with respec t  to  X9 y i e l d s  the following expression: 

F1 = F1l + F12 (E-2) 

where 

and 

2 2 
R ~ C O S  e (B/c)Y tan dY j 2 2  

2 2  2 2 2 
- - 

II (Y +Ro+2RoYsin6) [ (R Y sec a / C  )+Ro+2RoYsin8] F1l - 

yo 03-3) 

Y tan-' [ -1 dY 
F12 = 7r 3/ 2 (Y +Ro+2RoYsin8) 

- 

(E - 4 )  0 

By in tegra t ing  by p a r t s ,  the in t eg ra l  F12 becomes 

Yosin 8 + R~ s i n  8 -1 B tan a 
F12 = - - R tan ( c )+;[ (Y 02+Ro2+2RoY os i n  6 )  112 

(B/C)Yotan a 
tan-'[ (Yo +Ro +2RoYosin e )  112 ] +  F13 (E-5) 



dY 
W 

where 
(B/C)Rotan Q: (Ysine + R ) 

0 

F13 = iJ (Yo+Ro+2RoYsine) 2 2 [ (R 2 2  Y sec 2 U/c2)+R2+2R Ysine] 
0 0  - yo 

The in t eg ra l s  Fll and F13 can be combined and s implif ied to  become 

o r ,  by d i r e c t  in tegra t ion ,  

- B tan a - -  B tan a Fll i. F13 - . 
- . - I  ri . . . A  ... 

2 RL+BL tanLa A RL+BL tanLO: 

3 2  2 
1 (R /B C)sec a Yo - (1-H tan a) tan a 

R + B tan a J 

(E-7) 

(E-8) 

where 6 and Ro have been eliminated by use of r e l a t ions  i n  Eqs.  (43) 

and (47). 

The r e s u l t s  i n  Eqs. (E-5) and (E-8)  w i t h  Yo given by Eq.  (52) 

give the configuration f a c t o r  fo r  the tangent region a s  

- -  I. [(l-Htana)tarXx]tan -1 (7) B t a m  - --& [R 2 -  -Htam(l-Htam) 
F1 - RC 

B tan a B tan a 

F 2 2  2 -  2 2  2 tan-l { (R /B )sec a H - (l-Htana)[l-(R /B )cosec a l t a m  
c J R ~  + B2 tan2* J 
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where 

M = J(E+[ (l-Htana)/tanC%]) 2 2  R + [ (l-Htaw) tana if-R2+2(1-Htanc%) 2 2  1 
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F IG.2  THE C O N I C A L  G A S  BODY 
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FIG.3 THE SEMI-INFINITE CYLINDRICAL GAS BODY 

HYD 8019 

41 



0 

N - (0 

0 0 

4 
W 

42 

0 

* 
0 
0 

0 

a 

x) 
.I a 
W z n  
m O  

II 

a 
In 

(v 

HYD 8020 



(u 
c 

0 

0 
c 

0 

N 
0 
0 

0 

a 
LL 
0 

m 
6 
ii 

43 TTKD 8021 



a 

0 

ll. 
0 
W z 
Q 
A 
h 

x 
W 

44 HYD 8022 



0 0 0 

x 
\u 

45 

0 
0 0 

a 

W z 
-J 
a 
n 
W 

Xs’3 8023 



v, 
I- 
-1 
3 cn 
W a 

I 
I 

I 
I 
I' 

I 
I 
I 
I 
I 

0 
I- 
O 
l- a 
z 
>- 
v, 
U 

- 

I 
I 
I 

- 

I- 6, 
I, 
- a  

1-  rc 

I- 

I- * 

0 
I 
II 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

4 
W 

46 

a 



0 

I 
I 
i 

I 

0 
0 

d 
0 
0 

cu 
0 
0 

I I 

t I 
I 1 

I 1 
I 1 
I 

1 

I I 
I 

1 
1 
/ I 

t 

I 

I I 

I 
I I 
I I 

I 
t 
t 

I ! 
I 
f 

I I I r  

I 
I 

I 
I 

8 

O* 
9 

J 

I 

I !  

cu 
I 
II 

/ 
I 
I 
I 

i 
r' 
t 

I 

1 I 
/ 
/ 

(D e 
0 0 

0 
A 

0 
W 

cu 
0 
0 

0 

x 
W 

47 



PLANE A X I S  OD 

L 

FIG. IO  GEOMETRICAL DIAGRAM OF A CONICAL GAS BODY 
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